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An exact method is presented for solving the vibration of a double-beam system
subject to harmonic excitation. The system consists of a main beam with an applied
force, and an auxiliary beam, with a distributed spring k and dashpot c in parallel
between the two beams. The viscous damping and the applied forcing function
can be completely arbitrary. The damping is assumed to be neither small nor
proportional, and the forcing function can be either concentrated at any point or
distributed. The Euler}Bernoulli model is used for the transverse vibrations of
beams, and the spring}dashpot represents a simpli"ed model of viscoelastic
material. The method involves a simple change of variables and modal analysis to
decouple and to solve the governing di!erential equations respectively. A case
study is solved in detail to demonstrate the methodology, and the frequency
responses are shown in dimensionless parameters for low and high values of
sti!ness (k/k

0
) and damping (c/c

0
). The plots show that each natural mode consists

of two submodes: (1) the in-phase submode whose natural frequencies and resonant
peaks are independent of sti!ness and damping, and (2) the out-of-phase submode
whose natural frequencies are increased with increasing sti!ness and resonant
peaks are decreased with increasing damping. The closed-form solution and the
plots, especially the three-dimensional ones, not only illustrate the principles of the
vibration problem but also shed light on practical applications.

( 2000 Academic Press
1. INTRODUCTION

The forced response of a uniform Euler}Bernoulli beam is a classical example of
a distributed system that can be solved conveniently by modal analysis. Attaching
an auxiliary identical beam to the primary beam by means of a distributed
spring}dashpot complicates the problem. With arbitrary boundary conditions and
forcing functions, the problem is di$cult to solve. Under certain conditions,
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though, the problem becomes tractable. Closed-form solutions for the forced
response of damped double-beam systems can be obtained under specialized cases.

The forced vibration of two beams connected at two discrete points by two
spring}dashpot subunits was considered by Dublin and Friedrich [1]. Subsequently,
Seelig and Hoppman II, worked out the problem of normal mode vibrations and
impact on a double-beam system [2, 3]. An alternative approach using the Laplace
transform was developed by Hamada et al. [4]. Rao considered the free response of
Timoshenko beam systems which include the e!ects of rotary inertia and shear
deformation [5]. In references [2}5], the beams are connected by distributed springs,
but damping is ignored. The damped double-beam system was further investigated
by others [6}8], but the beams are interconnected only at discrete points.

Double-beam systems interconnected by a distributed spring}dashpot in parallel
have been investigated by several authors. Douglas and Yang analyzed the
transverse damping in the frequency response of three-layer elastic}
viscoelastic}elastic beams in a mechanical impedance format [9]. The system was
treated as two non-identical Euler}Bernoulli beams with a viscoelastic layer in
between. Their method is limited to a case of "xed}free boundary conditions for
both beams and a concentrated sinusoidal load applied at the free end. Vu
presented a closed-form solution for the forced response of a general beam system
[10]. Vu's method applies to non-identical Euler}Bernoulli beams with arbitrary
boundary conditions and general applied loads. Similar to Seelig and Hoppman II
[2, 3], these authors manipulated a set of two coupled fourth order di!erential
equations into a single eight order di!erential equation.

This paper presents a unique yet simple method of obtaining the exact solution
for the forced vibration of a damped double-beam system. The method involves
a change of variables to decouple the set of two fourth order di!erential equations,
and then the solution is obtained by means of modal analysis. This approach allows
both the viscous damping and the applied forcing function to be completely
arbitrary. The damping need not be small or proportional to the mass and sti!ness,
which is di!erent than the conventional method [11, 12], and the forcing function
can be either distributed or concentrated at any point. The two restrictions of this
method are (1) the beams must be identical, and (2) the boundary conditions on the
same side of the system must be the same, though they can be arbitrary. To
demonstrate the technique in detail, a case study is chosen: the two beams are
simply supported and the forcing function is a concentrated sinusoidal load applied
at the midpoint of the main beam. The complete solution is derived, and frequency
responses are plotted for various dimensionless values of sti!ness (k/k

0
) and

damping (c/c
0
).

2. PROBLEM STATEMENT

The system in Figure 1 consists of a main beam subjected to a force distribution
which is an arbitrary function of space and time. An auxiliary beam is connected to
the main beam by a viscoelastic material. This material is simply modelled as
a distributed spring}dashpot system, where k and c are the spring constant and the



Figure 1. A system of double-beam and distributed spring and dashpot.
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damping coe$cient respectively. In general, the two beams are di!erent where E is
the modulus of elasticity, I is the area-moment of inertia, o is the mass density, and
A is the cross-sectional area. The transverse displacements of the main beam and
auxiliary beam are w

1
(x, t) and w

2
(x, t ) respectively. The forcing function acting on

the main beam is f (x, t ). A thorough understanding of the problem will lead to
better techniques for reducing resonance-induced vibrations.

3. METHODOLOGY

The methodology can be organized into the following three steps: (1) obtain
a mathematical model (governing di!erential equations) for the system; (2) use
a simple manipulation of the variables to decouple the system equations; (3) solve
the system equations for a case study.

3.1. MATHEMATICAL MODEL

A simple Euler}Bernoulli model for tansverse vibration is used. Recall that the
Euler}Bernoulli model is valid only if the ratio of the depth to the length of the
beam is small and if the beams are excited at low frequencies. The model assumes
that both the rotary inertia and shear deformation are negligible, and that the
bending wavelength is several times larger than the cross sectional dimensions of
the beams. The coupled governing di!erential equations of the system can be
shown, without much di$culty, as
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3.2. METHOD OF DECOUPLING THE EQUATIONS

In general, coupled partial di!erential equations are very di$cult to solve;
however, the problem becomes tractable if certain assumptions are made. With
a simple manipulation of variables, the equations can be uncoupled and modal
analysis can be used to determine the solution.

Let us assume the boundary conditions are identical on each side of both beams
and
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where e and m denote the #exural rigidity EI and mass per unit length oA,
respectively. Note that the products o

1
A

1
and o
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2
are equal but the individual

parameters can be arbitrary. The same relationship holds for E
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1

and E
2
I
2
. This

fact is useful because the design constraints are relaxed. With the assumption of
equations (3) and (4), equations (1) and (2) become
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As a simple manipulation of variables, let
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Thus,
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where w(x, t) is the relative displacement of the main beam with respect to the
auxiliary beam. Subtracting equation (6) from equation (5) gives
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With the introduction of equation (7), equations (9) and (6) become
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At this point, the equations are uncoupled. The solution steps are listed as
follows. First, solve equation (10) for the relative displacement w(x, t). Second, solve
equation (11) for the displacement of the auxiliary beam w

2
(x, t). Finally, equation

(8) yields the displacement of the main beam w
1
(x, t). Note that equation (10) is

identical to the di!erential equation of the forced vibration of a Euler}Bernoulli
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beam on a viscoelastic foundation, and equation (11) is that of an Euler}Bernoulli
beam.

Now, the three-step procedure of modal analysis is employed. First, the natural
frequencies and the corresponding mode shapes are obtained by solving the
undamped free vibration with appropriate boundary conditions. Second, the
normalized orthogonality property is established. And third, the forced vibration is
solved by means of modal expansion.

3.3. SOLUTION OF EQUATIONS}CASE STUDY

The boundary conditions can be arbitrary a long as they are identical on each
side of both beams, and the applied forcing can be completely arbitrary. In order to
show the solution method in detail, the following case is considered. Both beams
are simply supported, and the forcing function is a concentrated sinusoidal load
applied at the midpoint of the main beam (Figure 2). For this system, the boundary
conditions are
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The concentrated sinusoidal forcing function is

f (x, t)"F(x) cos ux"PdAx!
¸

2 B cos ut, (13)

where P is constant, d is the Dirac delta function, and u is the forcing frequency.
For the undamped free vibration, equation (10) becomes
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and with equation (12), the boundary conditions associated with equation (14) are
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Assuming that the relative motion, w(x, t), is one of its natural modes of
vibration, the solution of equation (14) is in the form

w(x, t)"= (x)(A cos ut#B sin ut), (16)



Figure 2. Boundary conditions and forcing function of a case study.
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where u is a natural frequency and= (x) is the corresponding mode shape (or mode
function). Substituting equation (16) into equation (14), it follows that

e
d4=(x)

dx4
#2k=(x)"mu2=(x), (17)

or

d4=(x)
dx4

!j4=(x)"0, (18)

where

j4"(mu2!2k)/e. (19)

Now, the solution of equation (19) is in the form

=(x)"Cecx, (20)

where

c"(j4)1@4. (21)

With the use of complex algebra, the four complex roots are given as
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Then, the general complex solution equation (20) becomes
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The boundary conditions from equation (15) yield
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If equation (26) is introduced into equation (25), it follows that
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The normalized orthogonality property is given as
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is the Kronecker delta.
Following the standard procedure used in modal analysis, a solution of equation

(10) is assumed to be in the form of a superposition of the normal modes
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If the normalized orthogonality property, equation (36), is introduced into equation
(41), all the terms in the in"nite series vanish except r"s. Thus,
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thus,
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Modal analysis is, once again, used to solve for the forced vibration, equation
(11). This is the familiar transverse vibration of an Euler}Bernoulli beam. The
solution of the eigenvalue problem of a simply supported beam is well known (see,
for example, references [11}14]).

The eigenvalues are
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Since the last integral of equation (63) is equal to the normalized orthogonality (59),
all the terms in the in"nite series vanish except r"s. Hence,
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Finally, the steady state solution of the main beam is given by equation (8).

4. RESULTS AND DISCUSSION

The numerical results for the double-beam case study are presented in
a frequency response format. Selected plots in two and three dimensions are shown,
and their salient features are discussed.

The results can be expressed in terms of the dimensionless ratios [10]
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TABLE 1

First four natural frequencies

Natural frequencies (rad/s)

System with low System with high
Mode r sti!ness (k/k

0
"10) sti!ness (k/k

0
"800)

1 9)8696 9)8696
1 10)8355 41)1996
3 88)8264 88)8264
3 88)9389 97)4173



Figure 3. Frequency response at midpoint of beams: (a) low sti!ness (k/k
0
"100), (b) high sti!ness

(k/k
0
"800); ** c/c

0
"0)00, - - - c/c

0
"10)00.
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responses are obtained for low and high values of sti!ness (k/k
0
"10, k/k

0
"800)

and damping (c/c
0
"0, c/c

0
"10).

The "rst four natural frequencies of the case study are summarized in Table 1 for
systems with low and high sti!ness values. The "rst two frequencies correspond to
the 1st mode (r"1), and the next two correspond to the 3rd mode (r"3); all the
even modes (r"2, 4, 6,2) are suppressed because of symmetry. Notice that only
the "rst frequency of each mode r is independent of the sti!ness k.

The frequency responses at the mid-span of the beams are shown in Figures 3}5.
The mid-span is chosen because of symmetry of the beam system and applied load.
The semi-log plots of Figure 3 show the absolute amplitude for low and high
sti!ness, with and without damping. The amplitude of the main beam (Figure 5)
illustrates in three dimensions how the response changes as the values of sti!ness or
damping are increased. As expected for the undamped system, the resonant peaks
approach in"nity, which are arbitrarily cut-o! at 1)0 clarity in visualizing the plots.



Figure 4. Amplitudes at midpoints of beams, undamped and high sti!ness (k/k
0
"800).
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A comparison of Figures 5(a) and (b) shows that the 1st resonance is una!ected by
damping. Figures 5(c) and (d) show that damping suppresses only the 2nd
resonance.

The three-dimensional plots of Figure 6 show the amplitudes of frequency
response at various points along the undamped beam system. The purposes of these
plots are (1) to reveal the natural bending modes of each beam and (2) to show the
motions of the two beams relative to each other. The resonances clearly show that
the beams follow their dominant natural bending modes. Furthermore, the beams
vibrate in-phase at the 1st resonance and out-of-phase at the 2nd one. The same
phase-relationship repeats for the next set of two resonances. Note that the plots



Figure 5. Main-beam frequency response: (a) undamped with varying sti!ness; (b) damped
(c/c

0
"10) with varying sti!ness; (c) low sti!ness (k/k

0
"10) with varying damping; (d) high sti!ness

(k/k
0
"800) with varying damping.
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should show resonant peaks approaching in"nity, but the results are limited by
graphic resolution.

The e!ect of sti!ness and damping on the separations and reduction of
resonances, respectively, can be explained as follows. The results of the case study
show that each natural motion consists of two submodes: in-phase and out-of-
phase (Figure 7). Similar results are also shown by Seelig and Hoppmann II [2].
Since the system (Figure 2) is forced to move in a perfectly symmetrical fashion, all
the even modes are suppressed. Consequently, the 1st and 3rd natural motions and
their corresponding submodes are shown, and the 2nd mode is ignored. With
damping, energy dissipation depends on relative motion, which only exists in the
out-of-phase submodes. Therefore, damping is ine!ective in reducing the
resonances that are associated with the in-phase submodes.

Since damping does not a!ect the in-phase submodes of an identical beam
system, the auxiliary beam cannot be used e!ectively over a wide range of
frequencies as a distributed dynamic vibration absorber for the main beam.
However, a closed-form solution for a non-identical auxiliary beam with boundary
condition di!erent from the main beam shows that the auxiliary beam can be used
as an e!ective vibration absorber [10].



Figure 6. Amplitudes at various points along both beams, undamped and high sti!ness (k/k
0
"800).

Figure 7. (a) 1st and (b) 3rd natural motions and their corresponding submodes. The 2nd natural
motion is suppressed because of symmetry.
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5. CONCLUSIONS

A closed-form solution is developed for analyzing the vibration problem of
a damped double-beam system. A simple change of variables and modal analysis
are utilized to decouple and solve the di!erential equations. The damping is
assumed neither small nor proportional, and the forcing function can be either
concentrated at any point or distributed. Although the method presented is
applicable only for a limited class of problems, it provides an analytical solution
that serves as a benchmark for further investigation of more complex n-beam
systems such as damped triple-beam systems. Since the solution is exact, it allows
a complete understanding of the problem.
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